# 2022-04-11 Integration¶

## Last time¶

• Reflect on differentiation

• Second order (Newton type) optimization

• Project discussion

## Today¶

• Midpoint and trapezoid rules

• Extrapolation

• Polynomial interpolation for integration

using LinearAlgebra
using Plots
default(linewidth=4, legendfontsize=12)

function vander_legendre(x, k=nothing)
if isnothing(k)
k = length(x) # Square by default
end
m = length(x)
Q = ones(m, k)
Q[:, 2] = x
for n in 1:k-2
Q[:, n+2] = ((2*n + 1) * x .* Q[:, n+1] - n * Q[:, n]) / (n + 1)
end
Q
end

CosRange(a, b, n) = (a + b)/2 .+ (b - a)/2 * cos.(LinRange(-pi, 0, n))

CosRange (generic function with 1 method)


# Integration¶

We’re interested in computing definite integrals

$\int_a^b f(x) dx$

and will usually consider finite domains $$-\infty < a <b < \infty$$.

• Cost: (usually) how many times we need to evaluate the function $$f(x)$$

• Accuracy

• compare to a reference value

• compare to the same method using more evaluations

• Consideration: how smooth is $$f$$?

# We need some test functions¶

F_expx(x) = exp(2x) / (1 + x^2)
f_expx(x) = 2*exp(2x) / (1 + x^2) - 2x*exp(2x)/(1 + x^2)^2

F_dtanh(x) = tanh(x)
f_dtanh(x) = cosh(x)^-2

integrands = [f_expx, f_dtanh]
antiderivatives = [F_expx, F_dtanh]
tests = zip(integrands, antiderivatives)

zip(Function[f_expx, f_dtanh], Function[F_expx, F_dtanh])

plot(integrands, xlims=(-1, 1)) ## Fundamental Theorem of Calculus¶

Let $$f(x)$$ be a continuous function and define $$F(x)$$ by

$F(x) = \int_a^x f(s) ds .$
Then $$F(x)$$ is uniformly continuous, differentiable, and
$F'(x) = f(x) .$
We say that $$F$$ is an antiderivative of $$f$$. This implies that
$\int_a^b f(x) dx = F(b) - F(a) .$
We will test the accuracy of our integration schemes using an antiderivative provided in our tests.

### Method of Manufactured Solutions¶

• Analytically integrating an arbitrary function is hard

• tends to require trickery

• not always possible to express in closed form (e.g., elliptic integrals)

• sometimes needs special functions $$\operatorname{erf} x = \frac{2}{\sqrt\pi} \int_0^x e^{-t^2} dt$$

• don’t know when to give up

• Analytic differentation

• involves straightforward application of the product rule and chain rule.

So if we just choose an arbitrary function $$F$$ (the antiderivative), we can

1. compute $$f = F'$$

2. numerically integrate $$\int_a^b f$$ and compare to $$F(b) - F(a)$$

# Newton-Cotes methods¶

Approximate $$f(x)$$ using piecewise polynomials (an interpolation problem) and integrate the polynomials.

## Midpoint method¶

function fint_midpoint(f, a, b; n=20)
dx = (b - a) / n
x = LinRange(a + dx/2, b - dx/2, n)
sum(f.(x)) * dx
end

for (f, F) in tests
a, b = -2, 2
I_num = fint_midpoint(f, a, b, n=20)
I_analytic = F(b) - F(a)
println("$f:$I_num error=$(I_num - I_analytic)") end  f_expx: 10.885522849146847 error=-0.03044402970425253 f_dtanh: 1.9285075531458646 error=0.00045239299423083246  # How does the accuracy change as we use more points?¶ function plot_accuracy(fint, tests, ns; ref=[1,2]) a, b = -2, 2 p = plot(xscale=:log10, yscale=:log10, xlabel="n", ylabel="error") for (f, F) in tests Is = [fint(f, a, b, n=n) for n in ns] Errors = abs.(Is .- (F(b) - F(a))) scatter!(ns, Errors, label=f) end for k in ref plot!(ns, ns.^(-1. * k), label="\$n^{-$k}\$")
end
p
end
plot_accuracy(fint_midpoint, tests, 2 .^ (0:10)) ## Trapezoid Rule¶

The trapezoid rule uses piecewise linear functions on each interval.

$\begin{split}\begin{split} \int_a^b f(a) + \frac{f(b) - f(a)}{b - a} (x - a) &= f(a) (x-a) + \frac{f(b) - f(a)}{2(b - a)} (x - a)^2 \Big|_{x=a}^b \\ &= f(a) (b-a) + \frac{f(b) - f(a)}{2(b - a)} (b-a)^2 \\ &= \frac{b-a}{2} \big( f(a) + f(b) \big) . \end{split} \end{split}$
• Can you get to the same result using a geometric argument?

• What happens when we sum over a bunch of adjacent intervals?

# Trapezoid in code¶

function fint_trapezoid(f, a, b; n=20)
dx = (b - a) / (n - 1)
x = LinRange(a, b, n)
fx = f.(x)
fx /= 2
fx[end] /= 2
sum(fx) * dx
end

plot_accuracy(fint_trapezoid, tests, 2 .^ (1:10)) ## Extrapolation¶

Let’s switch our plot around to use $$h = \Delta x$$ instead of number of points $$n$$.

function plot_accuracy_h(fint, tests, ns; ref=[1,2])
a, b = -2, 2
p = plot(xscale=:log10, yscale=:log10, xlabel="h", ylabel="error",
legend=:bottomright)
hs = (b - a) ./ ns
for (f, F) in tests
Is = [fint(f, a, b, n=n) for n in ns]
Errors = abs.(Is .- (F(b) - F(a)))
scatter!(hs, Errors, label=f)
end
for k in ref
plot!(hs, hs.^k, label="\$h^{$k}\\$")
end
p
end

plot_accuracy_h (generic function with 1 method)

plot_accuracy_h(fint_midpoint, tests, 2 .^ (2:10)) # Extrapolation math¶

The trapezoid rule with $$n$$ points has an interval spacing of $$h = 1/(n-1)$$. Let $$I_h$$ be the value of the integral approximated using an interval $$h$$. We have numerical evidence that the leading error term is $$O(h^2)$$, i.e.,

$I_h - I_0 = c h^2 + O(h^3)$
for some as-yet unknown constant $$c$$ that will depend on the function being integrated and the domain of integration. If we can determine $$c$$ from two approximations, say $$I_h$$ and $$I_{2h}$$, then we can extrapolate to $$h=0$$. For sufficiently small $$h$$, we can neglect $$O(h^3)$$ and write
$\begin{split}\begin{split} I_h - I_0 &= c h^2 \\ I_{2h} - I_0 &= c (2h)^2 . \end{split}\end{split}$
Subtracting these two lines, we have
$I_{h} - I_{2h} = c (h^2 - 4 h^2)$
which can be solved for $$c$$ as
$c = \frac{I_{h} - I_{2h}}{h^2 - 4 h^2} .$
Substituting back into the first equation, we solve for $$I_0$$ as
$I_0 = I_h - c h^2 = I_h + \frac{I_{h} - I_{2h}}{4 - 1} .$
This is called Richardson extrapolation.

# Extrapolation code¶

function fint_richardson(f, a, b; n=20)
n = div(n, 2) * 2 + 1
h = (b - a) / (n - 1)
x = LinRange(a, b, n)
fx = f.(x)
fx[[1, end]] /= 2
I_h = sum(fx) * h
I_2h = sum(fx[1:2:end]) * 2h
I_h + (I_h - I_2h) / 3
end
plot_accuracy_h(fint_richardson, tests, 2 .^ (2:10), ref=1:5) • we now have a sequence of accurate approximations

• it’s possible to apply extrapolation recursively

• works great if you have a power of 2 number of points

• and your function is nice enough

# Polynomial interpolation for integration¶

x = LinRange(-1, 1, 100)
P = vander_legendre(x, 10)
plot(x, P) ## Idea¶

• Sample the function $$f(x)$$ at some points $$x \in [-1, 1]$$

• Fit a polynomial through those points

• Return the integral of that interpolating polynomial

## Question¶

• What points do we sample on?

• How do we integrate the interpolating polynomial?

Recall that the Legendre polynomials $$P_0(x) = 1$$, $$P_1(x) = x$$, …, are pairwise orthogonal

$\int_{-1}^1 P_m(x) P_n(x) = 0, \quad \forall m\ne n.$

# Integration using Legendre polynomials¶

function plot_accuracy_n(fint, tests, ns; ref=[1,2])
a, b = -2, 2
p = plot(xscale=:log10, yscale=:log10, xlabel="n", ylabel="error",
legend=:bottomright)
for (f, F) in tests
Is = [fint(f, a, b, n=n) for n in ns]
Errors = abs.(Is .- (F(b) - F(a)))
scatter!(ns, Errors, label=f)
end
p
end

plot_accuracy_n (generic function with 1 method)

function fint_legendre(f, a, b; n=20)
x = CosRange(-1, 1, n)
P = vander_legendre(x)
x_ab = (a+b)/2 .+ (b-a)/2*x
c = P \ f.(x_ab)
(b - a) * c
end

fint_legendre(x -> 1 + x, -1, 1, n=4)

2.0

p = plot_accuracy_h(fint_legendre, tests, 4:20, ref=1:5) 