2022-01-26 Newton methods

  • Office hours: Monday 9-10pm, Tuesday 2-3pm, Thursday 2-3pm

  • This week will stay virtual. Plan is to start in-person the following Monday (Jan 31)

Last time

  • Discuss rootfinding as a modeling tool

  • Limitations of bisection

  • Convergence classes

  • Intro to Newton methods

Today

  • Newton’s method via Taylor series

  • Convergence theory for fixed point methods

  • Derive Newton’s method via convergence theory

  • Newton methods in computing culture

  • Breaking Newton’s method

using Plots
default(linewidth=4, legendfontsize=12)

f(x) = cos(x) - x
hasroot(f, a, b) = f(a) * f(b) < 0
function bisect_iter(f, a, b, tol)
    hist = Float64[]
    while abs(b - a) > tol
        mid = (a + b) / 2
        push!(hist, mid)
        if hasroot(f, a, mid)
            b = mid
        else
            a = mid
        end
    end
    hist
end
bisect_iter (generic function with 1 method)

Convergence classes

A convergent rootfinding algorithm produces a sequence of approximations \(x_k\) such that

\[\lim_{k \to \infty} x_k \to x_*\]
where \(f(x_*) = 0\). For analysis, it is convenient to define the errors \(e_k = x_k - x_*\). We say that an iterative algorithm is \(q\)-linearly convergent if
\[\lim_{k \to \infty} |e_{k+1}| / |e_k| = \rho < 1.\]
(The \(q\) is for “quotient”.) A smaller convergence factor \(\rho\) represents faster convergence. A slightly weaker condition (\(r\)-linear convergence or just linear convergence) is that
\[ |e_k| \le \epsilon_k \]
for all sufficiently large \(k\) when the sequence \(\{\epsilon_k\}\) converges \(q\)-linearly to 0.

hist = bisect_iter(f, -1, 3, 1e-10)
r = hist[end] # What are we trusting?
hist = hist[1:end-1]
scatter( abs.(hist .- r), yscale=:log10)
ks = 1:length(hist)
ρ = 0.5
plot!(ks, 4 * (ρ .^ ks))
../_images/2022-01-26-newton_4_0.svg

Newton-Raphson Method

Much of numerical analysis reduces to Taylor series, the approximation

\[ f(x) = f(x_0) + f'(x_0) (x-x_0) + f''(x_0) (x - x_0)^2 / 2 + \underbrace{\dotsb}_{O((x-x_0)^3)} \]
centered on some reference point \(x_0\).

In numerical computation, it is exceedingly rare to look beyond the first-order approximation

\[ \tilde f_{x_0}(x) = f(x_0) + f'(x_0)(x - x_0) . \]
Since \(\tilde f_{x_0}(x)\) is a linear function, we can explicitly compute the unique solution of \(\tilde f_{x_0}(x) = 0\) as
\[ x = x_0 - \frac{f(x_0)}{f'(x_0)} . \]
This is Newton’s Method (aka Newton-Raphson or Newton-Raphson-Simpson) for finding the roots of differentiable functions.

An implementation

function newton(f, fp, x0; tol=1e-8, verbose=false)
    x = x0
    for k in 1:100 # max number of iterations
        fx = f(x)
        fpx = fp(x)
        if verbose
            println("[$k] x=$x  f(x)=$fx  f'(x)=$fpx")
        end
        if abs(fx) < tol
            return x, fx, k
        end
        x = x - fx / fpx
    end  
end

f(x) = cos(x) - x
fp(x) = -sin(x) - 1
newton(f, fp, 1; tol=1e-15, verbose=true)
[1] x=1  f(x)=-0.45969769413186023  f'(x)=-1.8414709848078965
[2] x=0.7503638678402439  f(x)=-0.018923073822117442  f'(x)=-1.6819049529414878
[3] x=0.7391128909113617  f(x)=-4.6455898990771516e-5  f'(x)=-1.6736325442243012
[4] x=0.739085133385284  f(x)=-2.847205804457076e-10  f'(x)=-1.6736120293089505
[5] x=0.7390851332151607  f(x)=0.0  f'(x)=-1.6736120291832148
(0.7390851332151607, 0.0, 5)

That’s really fast!

  • 10 digits of accuracy in 4 iterations.

  • How is this convergence test different from the one we used for bisection?

  • How can this break down?

\[ x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \]
newton(f, fp, -pi/2+.1; verbose=true)
[1] x=-1.4707963267948965  f(x)=1.5706297434417247  f'(x)=-0.0049958347219742905
[2] x=312.9170549232224  f(x)=-312.59435002533314  f'(x)=-0.05350037037604283
[3] x=-5529.927542752894  f(x)=5530.676391917825  f'(x)=-0.33725953180603474
[4] x=10868.945936970244  f(x)=-10868.376227850798  f'(x)=-0.17815359146505727
[5] x=-50136.70732252356  f(x)=50135.70777741902  f'(x)=-1.0301593101044748
[6] x=-1468.7903453577164  f(x)=1468.8859787856973  f'(x)=-1.9954166200403913
[7] x=-732.6603742863299  f(x)=731.8761094362295  f'(x)=-1.6204261800544972
[8] x=-281.0038172368656  f(x)=280.8358913898124  f'(x)=-1.9857996296872256
[9] x=-139.58174866993488  f(x)=139.79912372811944  f'(x)=-0.02391184615360531
[10] x=5706.856156210999  f(x)=-5707.008659764705  f'(x)=-1.9883029222393844
[11] x=2836.5648158265976  f(x)=-2837.5220962814674  f'(x)=-1.2891610809292957
[12] x=635.503879177757  f(x)=-634.8839651181479  f'(x)=-1.784669713127157
[13] x=279.7607629875442  f(x)=-280.7481464325292  f'(x)=-0.8416524942745961
[14] x=-53.80700796583557  f(x)=52.88592082634005  f'(x)=-1.3893564966145653
[15] x=-15.74196061822768  f(x)=14.742538472479499  f'(x)=-1.0339908015219368
[16] x=-1.4840596284124175  f(x)=1.5706876106501757  f'(x)=-0.0037592697076601622
[17] x=416.333158287511  f(x)=-416.4052274406877  f'(x)=-1.99739963763799
[18] x=207.8594910282616  f(x)=-206.9888910802111  f'(x)=-1.4919915959184906
[19] x=69.12620885264326  f(x)=-68.1262712417355  f'(x)=-1.0111702413616044
[20] x=1.7525179991632598  f(x)=-1.933241162917233  f'(x)=-1.9835340045381016
[21] x=0.7778731690296721  f(x)=-0.0654654835715871  f'(x)=-1.7017658368004631
[22] x=0.7394040200105153  f(x)=-0.0005337303513481828  f'(x)=-1.6738476794194503
[23] x=0.7390851556610822  f(x)=-3.756576461011463e-8  f'(x)=-1.6736120457726615
[24] x=0.7390851332151608  f(x)=-2.220446049250313e-16  f'(x)=-1.6736120291832148
(0.7390851332151608, -2.220446049250313e-16, 24)

Convergence of fixed-point (by mean value theorem)

Consider the iteration

\[x_{k+1} = g(x_k)\]
where \(g\) is a continuously differentiable function. Suppose that there exists a fixed point \(x_* = g(x_*)\). By the mean value theorem, we have that
\[ x_{k+1} - x_* = g(x_k) - g(x_*) = g'(c_k) (x_k - x_*) \]
for some \(c_i\) between \(x_k\) and \(x_*\).

Taking absolute values,

\[|e_{k+1}| = |g'(c_k)| |e_k|,\]
which converges to zero if \(|g'(c_k)| < 1\).

Convergence of fixed-point (by Taylor series)

Consider the iteration

\[x_{k+1} = g(x_k)\]
where \(g\) is a continuously differentiable function. Suppose that there exists a fixed point \(x_* = g(x_*)\). There exists a Taylor series at \(x_*\),
\[ g(x_k) = g(x_*) + g'(x_*)(x_k - x_*) + O((x_k-x_*)^2) \]
and thus

(1)\[\begin{align} x_{k+1} - x_* &= g(x_k) - g(x_*) \\ &= g'(x_*) (x_k - x_*) + O((x_k - x_*)^2). \end{align}\]

In terms of the error \(e_k = x_k - x_*\),

\[ \left\lvert \frac{e_{k+1}}{e_k} \right\rvert = \lvert g'(x_*) \rvert + O(e_k).\]

Poll: Is this convergence A=q-linear, B=r-linear, C=neither?

Recall the definition of q-linear convergence

\[ \lim_{k\to\infty} \left\lvert \frac{e_{k+1}}{e_k} \right\rvert = \rho < 1. \]

Aside: Big \(O\) (“big oh”) notation

Limit \(n\to\infty\)

We’d say an algorithm costs \(O(n^2)\) if its running time on input of size \(n\) is less than \(c n^2\) for some constant \(c\) and sufficiently large \(n\).

Sometimes we write \(\operatorname{cost}(\texttt{algorithm}, n) = O(n^2)\) or (preferably) \(\operatorname{cost}(\texttt{algorithm}) \in O(n^2)\).

Note that \(O(\log n) \subset O(n) \subset O(n\log n) \subset O(n^2) \subset \dotsb\) so it’s correct to say “binary search is in \(O(n^2)\)”, even though a sharper statement is also true.

We say the algorithm is in \(\Theta(n^2)\) (“big theta”) if

\[ c_1 n^2 < \operatorname{cost}(\texttt{algorithm}) < c_2 n^2 \]
for some positive constants \(c_1,c_2\) and sufficiently large \(n\).

Limit \(h \to 0\)

In numerical analysis, we often have a small real number, and now the definitions take the limit as the small number goes to zero. So we say a term in an expression is in \(O(h^2)\) if

\[ \lim_{h\to 0} \frac{\operatorname{term}(h)}{h^2} < \infty . \]

Big \(O\) terms can be manipulated as

(2)\[\begin{align} h O(h^k) &= O(h^{k+1}) \\ O(h^k)/h &= O(h^{k-1}) \\ c O(h^k) &= O(h^k) \\ O(h^k) - O(h^k) &= ? \end{align}\]

Example of a fixed point iteration

We wanted to solve \(\cos x - x = 0\), which occurs when \(g(x) = \cos x\) is a fixed point.

xstar, _ = newton(f, fp, 1.)
g(x) = cos(x)
gp(x) = -sin(x)
@show xstar
@show gp(xstar)
plot([x->x, g], xlims=(-2, 3))
scatter!([xstar], [xstar],
    label="\$x_*\$")
xstar = 0.739085133385284
gp(xstar) = -0.6736120293089505
../_images/2022-01-26-newton_22_1.svg
function fixed_point(g, x, n)
    xs = [x]
    for k in 1:n
        x = g(x)
        append!(xs, x)
    end
    xs
end

xs = fixed_point(g, 2., 15)
plot!(xs, g.(xs), seriestype=:path, marker=:auto)
../_images/2022-01-26-newton_23_0.svg

Verifying fixed point convergence theory

\[ \left\lvert \frac{e_{k+1}}{e_k} \right\rvert \to \lvert g'(x_*) \rvert \]
@show gp(xstar)
es = xs .- xstar
es[2:end] ./ es[1:end-1]
gp(xstar) = -0.6736120293089505
15-element Vector{Float64}:
 -0.9161855415615605
 -0.15197657010596488
 -0.734870205299266
 -0.624132525531327
 -0.7026257933893496
 -0.6523498121376077
 -0.6870971782336925
 -0.664168570025122
 -0.6798044680427148
 -0.6693659427636027
 -0.6764378047956165
 -0.6716930541785153
 -0.6748976495459512
 -0.6727427617641084
 -0.6741962236114177
scatter(abs.(es), yscale=:log10, label="fixed point")
plot!(k -> abs(gp(xstar))^k, label="\$|g'|^k\$")
../_images/2022-01-26-newton_26_0.svg

Plotting Newton convergence

function newton_hist(f, fp, x0; tol=1e-12)
    x = x0
    hist = []
    for k in 1:100 # max number of iterations
        fx = f(x)
        fpx = fp(x)
        push!(hist, [x fx fpx])
        if abs(fx) < tol
            return vcat(hist...)
        end
        x = x - fx / fpx
    end
end
newton_hist (generic function with 1 method)
xs = newton_hist(f, fp, 1.97)
@show x_star = xs[end,1]
plot(xs[1:end-1,1] .- x_star, yscale=:log10, marker=:auto)
x_star = xs[end, 1] = 0.7390851332151607
../_images/2022-01-26-newton_29_1.svg

Poll: Is this convergence A=q-linear, B=r-linear, C=neither?

Formulations are not unique (constants)

If \(x = g(x)\) then

\[x = \underbrace{x + c(g(x) - x)}_{g_2}\]
for any constant \(c \ne 0\). Can we choose \(c\) to make \(\lvert g_2'(x_*) \rvert\) small?

c = .5
g2(x) = x + c * (cos(x) - x)
g2p(x) = 1 + c * (-sin(x) - 1)
@show g2p(xstar)
plot([x->x, g, g2], ylims=(-5, 5), label=["x" "g" "g2"])
g2p(xstar) = 0.16319398534552476
../_images/2022-01-26-newton_32_1.svg
xs = fixed_point(g2, 1., 15)
xs .- xstar
16-element Vector{Float64}:
  0.26091486661471597
  0.03106601954878585
  0.004893162344945079
  0.0007941171212053622
  0.00012947850276123773
  2.112687301181193e-5
  3.4475537732392425e-6
  5.62475483634195e-7
  9.16501970982253e-8
  1.4814399151852342e-8
  2.2752605355336186e-9
  2.2894852680366284e-10
 -1.0499723313017739e-10
 -1.594951948291623e-10
 -1.683889694348295e-10
 -1.6984036399492197e-10

Formulations are not unique (functions)

If \(x = g(x)\) then

\[x = \underbrace{x + h(x) \big(g(x) - x\big)}_{g_3(x)}\]
for any smooth \(h(x) \ne 0\). Can we choose \(h(x)\) to make \(\lvert g_3'(x) \rvert\) small?

h(x) = -1 / (gp(x) - 1)
g3(x) = x + h(x) * (g(x) - x)
plot([x-> x, cos, g2, g3], ylims=(-5, 5))
../_images/2022-01-26-newton_35_0.svg
  • We don’t know \(g'(x_*)\) in advance because we don’t know \(x_*\) yet.

  • This method converges very fast

  • We actually just derived Newton’s method.

A fresh derivation of Newton’s method

  • A rootfinding problem \(f(x) = 0\) can be converted to a fixed point problem

    \[x = x + f(x) =: g(x)\]
    but there is no guarantee that \(g'(x_*) = 1 + f'(x_*)\) will have magnitude less than 1.

  • Problem-specific algebraic manipulation can be used to make \(|g'(x_*)|\) small.

  • \(x = x + h(x) f(x)\) is also a valid formulation for any \(h(x)\) bounded away from \(0\).

  • Can we choose \(h(x)\) such that

    \[ g'(x) = 1 + h'(x) f(x) + h(x) f'(x) = 0\]
    when \(f(x) = 0\)?

In other words,

\[ x_{k+1} = x_k + \underbrace{\frac{-1}{f'(x_k)}}_{h(x_k)} f(x_k) . \]

Quadratic convergence!

\[ \left\lvert \frac{e_{k+1}}{e_k} \right\rvert \to \lvert g'(x_*) \rvert \]
  • What does it mean that \(g'(x_*) = 0\)?

  • It turns out that Newton’s method has locally quadratic convergence to simple roots,

    \[\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|^2} < \infty.\]

  • “The number of correct digits doubles each iteration.”

  • Now that we know how to make a good guess accurate, the effort lies in getting a good guess.

Culture: fast inverse square root

The following code appeared literally (including comments) in the Quake III Arena source code (late 1990s).

float Q_rsqrt( float number )
{
	long i;
	float x2, y;
	const float threehalfs = 1.5F;

	x2 = number * 0.5F;
	y  = number;
	i  = * ( long * ) &y;                       // evil floating point bit level hacking
	i  = 0x5f3759df - ( i >> 1 );               // what the fuck? 
	y  = * ( float * ) &i;
    y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration
//  y  = y * ( threehalfs - ( x2 * y * y ) );   // 2nd iteration, this can be removed

	return y;
}

We now have vector instructions for approximate inverse square root. More at https://en.wikipedia.org/wiki/Fast_inverse_square_root

How does it work?

Let’s look at the last line

y  = y * ( threehalfs - ( x2 * y * y ) );   // 1st iteration

We want a function \(f(y)\) such that \(f(1/\sqrt{x}) = 0\). One such function is

\[ f(y) = 1/y^2 - x, \quad f'(y) = -2/y^3.\]

There are others, e.g.,

\[f_1(y) = y^2 - 1/x,\quad f'(y) = 2 y,\]
but this would require a division.

Newton’s method is

(3)\[\begin{align} y_{k+1} &= y_k - \frac{f(y_k)}{f'(y_k)} \\ &= y_k - \frac{1/y_k^2 - x}{-2/y_k^3} \\ &= y_k + \frac 1 2 (y_k - x y_k^3) \\ &= y_k \left(\frac 3 2 - \frac 1 2 x y_k^2\right) \end{align}\]

Rootfinding outlook

  • Newton methods are immensely successful

    • Convergence theory is local; we need good initial guesses (activity)

    • Computing the derivative \(f'(x)\) is intrusive

      • Avoided by secant methods (approximate the derivative; activity)

      • Algorithmic or numerical differentiation (future topics)

    • Bisection is robust when conditions are met

    • Line search (activity)

    • When does Newton diverge?

  • More topics

    • Find all the roots

    • Use Newton-type methods with bounds

    • Times when Newton converges slowly