2022-02-21 QR Retrospective
Contents
2022-02-21 QR Retrospective¶
Last time¶
Performance strategies
Right vs left-looking algorithms
Elementary reflectors
Today¶
Householder QR
Comparison of interfaces
Profiling
Cholesky QR
using LinearAlgebra
using Plots
default(linewidth=4, legendfontsize=12)
function vander(x, k=nothing)
if isnothing(k)
k = length(x)
end
m = length(x)
V = ones(m, k)
for j in 2:k
V[:, j] = V[:, j-1] .* x
end
V
end
function gram_schmidt_classical(A)
m, n = size(A)
Q = zeros(m, n)
R = zeros(n, n)
for j in 1:n
v = A[:,j]
R[1:j-1,j] = Q[:,1:j-1]' * v
v -= Q[:,1:j-1] * R[1:j-1,j]
R[j,j] = norm(v)
Q[:,j] = v / R[j,j]
end
Q, R
end
gram_schmidt_classical (generic function with 1 method)
Householder QR¶
Gram-Schmidt constructed a triangular matrix \(R\) to orthogonalize \(A\) into \(Q\). Each step was a projector, which is a rank-deficient operation. Householder uses orthogonal transformations (reflectors) to triangularize.
The structure of the algorithm is
Constructing the \(Q_j\)¶
Each of our \(Q_j\) will have the form
The reflection, as depicted above by Trefethen and Bau (1999) can be written \(F = I - 2 \frac{v v^T}{v^T v}\).
Adventures in reflection¶
A = rand(4, 4); A += A'
v = copy(A[:,1])
v[1] -= norm(v)
v = normalize(v)
F = I - 2 * v * v'
B = F * A
4×4 Matrix{Float64}:
2.60433 2.36089 1.70012 2.01843
1.10168e-16 1.17304 0.970666 0.181717
2.13887e-16 0.56295 0.0443916 0.84314
1.51129e-16 0.334055 1.30142 0.615434
v = copy(B[2:end, 2])
v[1] -= norm(v); v = normalize(v)
F = I - 2 * v * v'
B[2:end, 2:end] = F * B[2:end, 2:end]
B
4×4 Matrix{Float64}:
1.57236 1.30985 1.71012 1.94193
-2.12968e-16 0.862657 0.432445 1.07707
-8.25206e-17 -5.55112e-17 -0.227314 -0.0211876
-8.76049e-17 2.77556e-17 -0.270377 -0.369496
An algorithm¶
function qr_householder_naive(A)
m, n = size(A)
R = copy(A)
V = [] # list of reflectors
for j in 1:n
v = copy(R[j:end, j])
v[1] -= norm(v)
v = normalize(v)
R[j:end,j:end] -= 2 * v * (v' * R[j:end,j:end])
push!(V, v)
end
V, R
end
qr_householder_naive (generic function with 1 method)
m = 4
x = LinRange(-1, 1, m)
A = vander(x, m)
V, R = qr_householder_naive(A)
_, R_ = qr(A)
R_
4×4 Matrix{Float64}:
-2.0 0.0 -1.11111 0.0
0.0 1.49071 1.38778e-17 1.3582
0.0 0.0 0.888889 9.71445e-17
0.0 0.0 0.0 0.397523
How to interpret \(V\) as \(Q\)?¶
function reflectors_mult(V, x)
y = copy(x)
for v in reverse(V)
n = length(v) - 1
y[end-n:end] -= 2 * v * (v' * y[end-n:end])
end
y
end
function reflectors_to_dense(V)
m = length(V[1])
Q = diagm(ones(m))
for j in 1:m
Q[:,j] = reflectors_mult(V, Q[:,j])
end
Q
end
reflectors_to_dense (generic function with 1 method)
m = 20
x = LinRange(-1, 1, m)
A = vander(x, m)
V, R = qr_householder_naive(A)
Q = reflectors_to_dense(V)
@show norm(Q' * Q - I)
@show norm(Q * R - A);
norm(Q' * Q - I) = 3.7994490775439526e-15
norm(Q * R - A) = 7.562760794606217e-15
Great, but we can still break it¶
A = [1 0; 1e-4 1.]
V, R = qr_householder_naive(A)
R
2×2 Matrix{Float64}:
1.0 0.0001
-3.57747e-13 1.0
We had the lines
v = copy(R[j:end, j])
v[1] -= norm(v)
v = normalize(v)
What happens when R
is already upper triangular?
An improved algorithm¶
function qr_householder(A)
m, n = size(A)
R = copy(A)
V = [] # list of reflectors
for j in 1:n
v = copy(R[j:end, j])
v[1] += sign(v[1]) * norm(v) # <---
v = normalize(v)
R[j:end,j:end] -= 2 * v * v' * R[j:end,j:end]
push!(V, v)
end
V, R
end
qr_householder (generic function with 1 method)
A = [2 -1; -1 2] * 1e-10
V, R = qr_householder(A)
tau = [2*v[1]^2 for v in V]
@show tau
V1 = [v ./ v[1] for v in V]
@show V1
R
tau = [1.894427190999916, 2.0]
V1 = [[1.0, -0.2360679774997897], [1.0]]
2×2 Matrix{Float64}:
-2.23607e-10 1.78885e-10
-1.29247e-26 -1.34164e-10
Householder is backward stable¶
m = 40
x = LinRange(-1, 1, m)
A = vander(x, m)
V, R = qr_householder(A)
Q = reflectors_to_dense(V)
@show norm(Q' * Q - I)
@show norm(Q * R - A);
norm(Q' * Q - I) = 5.949301496893686e-15
norm(Q * R - A) = 1.2090264267288813e-14
A = [1 0; 0 1.]
V, R = qr_householder(A)
qr(A)
LinearAlgebra.QRCompactWY{Float64, Matrix{Float64}}
Q factor:
2×2 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}}:
1.0 0.0
0.0 1.0
R factor:
2×2 Matrix{Float64}:
1.0 0.0
0.0 1.0
Orthogonality is preserved¶
x = LinRange(-1, 1, 20)
A = vander(x)
Q, _ = gram_schmidt_classical(A)
v = A[:,end]
@show norm(v)
scatter(abs.(Q[:,1:end-1]' * v), yscale=:log10, title="Classical Gram-Schmidt")
norm(v) = 1.4245900685395503
Q = reflectors_to_dense(qr_householder(A)[1])
scatter(abs.(Q[:,1:end-1]' * v), yscale=:log10, title="Householder QR")
Composition of reflectors¶
This turns applying reflectors from a sequence of vector operations to a sequence of (smallish) matrix operations. It’s the key to high performance and the native format (QRCompactWY
) returned by Julia qr()
.
Q, R = qr(A)
LinearAlgebra.QRCompactWY{Float64, Matrix{Float64}}
Q factor:
20×20 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}}:
-0.223607 -0.368394 -0.430192 0.437609 … -3.23545e-5 -5.31905e-6
-0.223607 -0.329616 -0.294342 0.161225 0.000550027 0.000101062
-0.223607 -0.290838 -0.173586 -0.0383868 -0.00436786 -0.000909558
-0.223607 -0.252059 -0.067925 -0.170257 0.0214511 0.00515416
-0.223607 -0.213281 0.0226417 -0.243417 -0.0726036 -0.0206167
-0.223607 -0.174503 0.0981139 -0.266901 … 0.178209 0.06185
-0.223607 -0.135724 0.158492 -0.24974 -0.323416 -0.144317
-0.223607 -0.0969458 0.203775 -0.200966 0.429021 0.268016
-0.223607 -0.0581675 0.233964 -0.129612 -0.386119 -0.402025
-0.223607 -0.0193892 0.249058 -0.0447093 0.157308 0.491364
-0.223607 0.0193892 0.249058 0.0447093 … 0.157308 -0.491364
-0.223607 0.0581675 0.233964 0.129612 -0.386119 0.402025
-0.223607 0.0969458 0.203775 0.200966 0.429021 -0.268016
-0.223607 0.135724 0.158492 0.24974 -0.323416 0.144317
-0.223607 0.174503 0.0981139 0.266901 0.178209 -0.06185
-0.223607 0.213281 0.0226417 0.243417 … -0.0726036 0.0206167
-0.223607 0.252059 -0.067925 0.170257 0.0214511 -0.00515416
-0.223607 0.290838 -0.173586 0.0383868 -0.00436786 0.000909558
-0.223607 0.329616 -0.294342 -0.161225 0.000550027 -0.000101062
-0.223607 0.368394 -0.430192 -0.437609 -3.23545e-5 5.31905e-6
R factor:
20×20 Matrix{Float64}:
-4.47214 0.0 -1.64763 0.0 … -0.514468 2.22045e-16
0.0 2.71448 1.11022e-16 1.79412 -2.498e-16 0.823354
0.0 0.0 -1.46813 5.55112e-17 -0.944961 -2.23779e-16
0.0 0.0 0.0 -0.774796 3.83808e-17 -0.913056
0.0 0.0 0.0 0.0 0.797217 -4.06264e-16
0.0 0.0 0.0 0.0 … -3.59496e-16 0.637796
0.0 0.0 0.0 0.0 -0.455484 -1.3936e-15
0.0 0.0 0.0 0.0 4.40958e-16 -0.313652
0.0 0.0 0.0 0.0 -0.183132 1.64685e-15
0.0 0.0 0.0 0.0 4.82253e-16 0.109523
0.0 0.0 0.0 0.0 … 0.0510878 5.9848e-16
0.0 0.0 0.0 0.0 -2.68709e-15 0.0264553
0.0 0.0 0.0 0.0 -0.0094344 -2.94383e-15
0.0 0.0 0.0 0.0 2.08514e-15 0.00417208
0.0 0.0 0.0 0.0 0.0010525 -2.24994e-15
0.0 0.0 0.0 0.0 … -1.64363e-15 -0.000385264
0.0 0.0 0.0 0.0 -5.9057e-5 7.69025e-16
0.0 0.0 0.0 0.0 1.76642e-16 -1.66202e-5
0.0 0.0 0.0 0.0 -1.04299e-6 -1.68771e-16
0.0 0.0 0.0 0.0 0.0 1.71467e-7
This works even for very nonsquare matrices¶
A = rand(1000000, 5)
Q, R = qr(A)
@show size(Q)
@show norm(Q*R - A)
R
size(Q) = (1000000, 1000000)
norm(Q * R - A) = 1.3061794499648251e-12
5×5 Matrix{Float64}:
-577.124 -432.904 -433.171 -432.588 -432.67
0.0 -382.047 -163.951 -164.018 -163.912
0.0 0.0 345.021 103.218 103.383
0.0 0.0 0.0 329.294 75.2444
0.0 0.0 0.0 0.0 320.426
This is known as a “full” (or “complete”) QR factorization, in contrast to a reduced QR factorization in which \(Q\) has the same shape as \(A\).
How much memory does \(Q\) use?
Compare to numpy.linalg.qr
¶
Need to decide up-front whether you want full or reduced QR.
Full QR is expensive to represent.
Cholesky QR¶
so we should be able to use \(L L^T = A^T A\) and then \(Q = A L^{-T}\).
function qr_chol(A)
R = cholesky(A' * A).U
Q = A / R
Q, R
end
A = rand(10,4)
Q, R = qr_chol(A)
@show norm(Q' * Q - I)
@show norm(Q * R - A)
norm(Q' * Q - I) = 4.0080210542206936e-15
norm(Q * R - A) = 2.6083227424051477e-16
2.6083227424051477e-16
x = LinRange(-1, 1, 15)
A = vander(x)
Q, R = qr_chol(A)
@show norm(Q' * Q - I)
@show norm(Q * R - A);
norm(Q' * Q - I) = 4.319941621565765e-6
norm(Q * R - A) = 7.58801405234759e-16
Can we fix this?¶
Note that the product of two triangular matrices is triangular.
R = triu(rand(5,5))
R * R
5×5 Matrix{Float64}:
0.937018 0.166589 1.28394 0.856513 1.91001
0.0 0.147171 0.422197 0.410025 1.03557
0.0 0.0 0.466456 0.381229 0.947622
0.0 0.0 0.0 0.690276 0.506928
0.0 0.0 0.0 0.0 0.0989786
function qr_chol2(A)
Q, R = qr_chol(A)
Q, R1 = qr_chol(Q)
Q, R1 * R
end
x = LinRange(-1, 1, 15)
A = vander(x)
Q, R = qr_chol2(A)
@show norm(Q' * Q - I)
@show norm(Q * R - A);
norm(Q' * Q - I) = 1.062650593210405e-15
norm(Q * R - A) = 8.199069771042307e-16
How fast are these methods?¶
m, n = 5000, 2000
A = randn(m, n)
@time qr(A);
1.236501 seconds (7 allocations: 77.393 MiB)
A = randn(m, n)
@time qr_chol(A);
0.366707 seconds (10 allocations: 137.329 MiB)
Profiling¶
using ProfileSVG
@profview qr(A)