2023-01-23 Functions
Contents
2023-01-23 Functions#
Using Julia
Plotting
Intro to floating point
Summing series
Relative vs absolute errors
Julia#
Julia is a relatively new programming language. Think of it as MATLAB done right, open source, and fast. It’s nominally general-purpose, but mostly for numerical/scientific/statistical computing. There are great learning resources. We’ll introduce concepts and language features as we go.
# The last line of a cell is output by default
x = 3
y = 4
4
println("$x + $y = $(x + y)") # string formatting/interpolation
4; # trailing semicolon suppresses output
3 + 4 = 7
@show x + y
x * y
x + y = 7
12
Numbers#
3, 3.0, 3.0f0, big(3.0) # integers, double precision, and single precision
(3, 3.0, 3.0f0, 3.0)
typeof(3), typeof(3.0), typeof(3.0f0), typeof(big(3.0))
(Int64, Float64, Float32, BigFloat)
# automatic promotion
@show 3 + 3.0
@show 3.0 + 3.0f0
@show 3 + 3.0f0;
3 + 3.0 = 6.0
3.0 + 3.0f0 = 6.0
3 + 3.0f0 = 6.0f0
# floating and integer division
@show 4 / 2
@show -3 ÷ 2; # type `\div` and press TAB
4 / 2 = 2.0
-3 ÷ 2 = -1
Arrays#
[1, 2, 3]
3-element Vector{Int64}:
1
2
3
# explicit typing
Float64[1,2,3]
3-element Vector{Float64}:
1.0
2.0
3.0
# promotion rules similar to arithmetic
[1,2,3.] + [1,2,3]
3-element Vector{Float64}:
2.0
4.0
6.0
x = [10., 20, 30]
x[2] # one-based indexing
20.0
x[2] = 3.5
3.5
# multi-dimensional array
A = [10 20 30; 40 50 60]
2×3 Matrix{Int64}:
10 20 30
40 50 60
A = np.array([[10, 20, 30], [40, 50, 60]])
Functions#
function f(x, y; z=3)
sqrt(x*x + y*y) + z
end
f (generic function with 1 method)
f(3, 4, z=5)
10.0
g(x, y) = sqrt(x^2 + y^2)
g(3, 4)
5.0
((x, y) -> sqrt(x^2 + y^2))(3, 4)
5.0
Loops#
# ranges
1:50000000
1:50000000
collect(1:5)
5-element Vector{Int64}:
1
2
3
4
5
x = 0
for n in 1:50000000
x += 1/n^2
end
@show x
x - pi^2/6 # trivia you can easily look up if needed
x = 1.6449340467988642
-2.0049362170482254e-8
# list comprehensions
sum([1/n^2 for n in 1:1000])
1.6439345666815612
Poll: What is floating point arithmetic?#
fuzzy arithmetic
exact arithmetic, correctly rounded
the primary focus of numerical analysis
0.1 + 0.2
(1 + 1.2e-16) - 1
2.220446049250313e-16
using Plots
default(linewidth=4)
plot(x -> (1 + x) - 1, xlims=(-1e-15, 1e-15),
xlabel="x", ylabel="y")
plot!(x -> x)
Machine epsilon#
We approximate real numbers with floating point arithmetic, which can only represent discrete values. In particular, there exists a largest number, which we call \(\epsilon_{\text{machine}}\), such that
The notation \(\oplus, \ominus, \odot, \oslash\) represent the elementary operation carried out in floating point arithmetic.
eps = 1
while 1 + eps != 1
eps = eps / 2
end
eps
1.1102230246251565e-16
eps = 1.f0
while 1 + eps != 1
eps = eps / 2
end
eps
5.9604645f-8
Beating exp
#
Suppose we want to compute \(f(x) = e^x - 1\) for small values of \(x\).
f1(x) = exp(x) - 1
y1 = f1(1e-8)
9.99999993922529e-9
f2(x) = x + x^2/2 + x^3/6
y2 = f2(1e-8)
1.000000005e-8
Which answer is more accurate?
@show (y1 - y2) # Absolute difference
@show (y1 - y2) / y2; # Relative difference
y1 - y2 = -1.1077470910720506e-16
(y1 - y2) / y2 = -1.1077470855333152e-8
0 / 0
NaN